Blog


The Calprotectin ELISA Kit was utilized in a recent publication. Scientists investigated the impact of repeated microbiome elimination on intestinal immunity and disease susceptibility. Check out the abstract and access to the full text below.


Abstract

Chronic gastrointestinal diseases are a significant global health burden that can require the use of gastrointestinal-cleansing regimens for diagnostics or therapeutic treatment. These regimens are beneficial for facilitating surgical preparation, drug delivery, colorectal cancer screenings, and personal use is common among proponents of natural health and among certain populations at high risk of HIV acquisition. It remains unclear, however, whether repeated clearance of the colonic microbiome induces persistent changes in the microbiome, intestinal immunity, and viral disease susceptibility. We addressed these parameters by repeatedly administering iso-osmolar enemas to rhesus macaques prior to low-dose intra-rectal challenge with simian immunodeficiency virus (SIV). Considering both longitudinal and cross-sectional analyses, we observed no consistent changes in the fecal microbiome or intestinal immune parameters of treated animals, nor were significant differences observed in susceptibility to SIV acquisition. Unexpectedly, enema-treated animals exhibited significantly lower setpoint viral loads after infection, although we were unable to clearly identify attributing causes. Our study demonstrates that repeated microbiome clearance using clinically administered iso-osmolar enemas is not sufficient to restructure the fecal microbiome, perturb intestinal immune parameters, or increase susceptibility to mucosal SIV challenge. This research framework serves as a model for the development of colonic-administered diagnostics and interventions.

Ortiz, Alexandra M. et al. Repeated enema administration in rhesus macaques is not sufficient to promote bacterial dysbiosis or gastrointestinal dysfunction. Mucosal Immunology, Volume 0, Issue 0. doi: 10.1016/j.mucimm.2025.06.002


If you have any questions about this product or any of our other offerings, contact us here.

Eagle Biosciences is excited to partner with BPM and support the Fetuin A (PTM) ELISA (DNlite-DKD)!


About Fetuin A (PTM)

The unique Fetuin A post translation modifications measured in this assay were identified in a large-scale profiling of urinary proteomics. This new biomarker can help predict the kidney condition of diabetes patients, months to years in advanced. This urine test can help predict kidney decline or complications and potentially improve a patient with diabetic kidney disease quality of care.

Principle of the Fetuin A (PTM) ELISA

The Fetuin A (PTM) ELISA (unique Fetuin-A with specific post translational modification (PTM) for Diabetic Kidney Disease (DKD)) is a competitive immunoassay. In this Fetuin A (PTM) ELISA, calibrators or unknown urine samples are mixed with anti-unique PTM Fetuin-A monoclonal antibody (mAb), and then incubated in a microplate pre-bounded with unique PTM Fetuin-A. The monoclonal antibody recognizes unique PTM Fetuin-A in calibrators or unknown samples under competition in microplate wells. After an incubation, an Horseradish Peroxide (HRP) conjugated secondary antibody is added, followed by an incubation with 3,3’,5,5’-tetramethylbenzidine (TMB) substrate. Their relative reactivity is determined by absorbance measurement at 450 nanometers (nm) and plotted by comparison with a predetermined unique PTM Fetuin-A calibration curve.

Benefits of the Assay

    • Fewer Steps
    • Shorter processing times – ever for high-throughput samples

If you have any questions about this kit or any of our other offerings, contact us here.

What are MHC molecules?

Major histocompatibility complex (MHC) molecules play an important role in the acquired immune system of vertebrates. MHC molecules present peptides derived from pathogens on the cell surface so that T-cells can determine the appropriate immune response. The MHC also plays a role in mediating leukocyte interactions, determining compatibility for organ transplants, and determining autoimmune disease susceptibility. In humans, the MHC complex is also known as the human leukocyte antigen (HLA) complex.

The peptide-MHC (pMHC) interaction to cognate T-cell receptors (TcR) occurs rapidly and at low affinity. Tetramerizing these molecules on a streptavidin scaffold engages multiple TcRs expressed on a given T cell, which stabilizes the reaction and allows for specific T cell staining. pMHC monomers and tetramers can also be used for purification and manipulation of T cells.


Research Applications

MHC monomers and tetramers can be used for selection and proliferation of specific T cells, allowing researchers to isolate specific viral or tumor related antigens. These antigens can be reintroduced to augment the immune system. They are also used in organ transplant research to help reduce the risk of graft-versus-host disease. Additionally, researchers in cancer immunotherapy and vaccine development are exploring various MHC multimer applications to further their fields.


What Eagle Biosciences Offers

We offer a wide range of pMHC monomers and tetramers through our partner, ImmunAware, including easYmer MHC tetramer kits. All of the MHC molecules in are catalog are biotinylated, meaning all of the pMHC monomers can be tetramerized with the laboratory’s choice of strepatavidin label.

View all of our monomer, tetramer, and easYmer kits here.


For more information or assistance finding a specific product, please contact us.

Eagle Biosciences is excited to announce the newest product series for Host Cell Protein Detection!

Host cell proteins (HCPs) are a major class of impurities produced during biotherapeutic manufacturing. They must be removed from the final drug product to both assure patient safety and maintain drug efficacy. Our wide range of Host Cell Protein Detection Kits are easy to use and highly sensitive.


What are HCPs and why must they be removed from biologic drugs?

HCPs are proteins produced or encoded by the host organisms used to produce recombinant therapeutic proteins. Genetic engineering allows the host organism cells to be transformed to produce a protein of interest. During the recombinant protein production, host cells also coproduce proteins related to the normal cell functions such structural proteins, as well as proteins required for normal cellular growth and function, and vary in both number and concentration depending on the chosen host species and the manufacturing process being used. In general, apart from the therapeutic protein of interest, all endogenous proteins co-expressed by the host cells are called host-cell proteins.

Why must HCPs be removed from biologic drugs?

HCPs must be removed from the final biotherapeutic product to avoid adverse effects. Almost all HCPs carry safety risks as foreign proteins due to the potential to elicit immune response in humans (e.g, cytokine storm). In addition, some HCPs can also act to enhance the immune response to a drug product. Certain HCPs can also affect drug product stability and efficacy if not adequately removed or inactivated.

How are HCPs detected?

ELISAs are widely used for detecting HCPs, where they are generally configured in a sandwich assay format for improved specificity. In this scenario, a microplate-bound antibody is used for analyte capture, then a second analyte-specific antibody (that binds a different epitope on the target molecule) is added to enable detection. By incorporating a reference standard (e.g., a purified protein) into the assay design, it is possible to quantify the analyte of interest and confirm that its concentration meets regulatory requirements. Advantages of ELISA are that it is sensitive and compatible with high sample throughput – key considerations for biopharmaceutical manufacturing.


If you have any questions about these products or any of our other offerings, contact us here.


The measurement of cell proliferation and cell toxicity is fundamental in biomedical research, especially in fields such as cancer biology, pharmacology, and toxicology. These parameters provide essential information about cell health, growth dynamics, and the effects of external agents such as drugs, environmental toxins, or genetic modifications.

Biomedica’s EZ4U ELISA Assay Kit (BI-5000) was highlighted in a recent study that investigated the development of novel chemosensitizers targeting therapy-resistant cancer stem cells (CSCs). The metabolic activity of cells was assessed using various cell lines. The study shows that telmisartan derivatives serve as effective chemosensitizers and offer an innovative approach for targeting CSCs in different types of malignant diseases. Click below for the full publication, where you can find the abstract and key findings!

Eradication of Therapy-Resistant Cancer Stem Cells by Novel Telmisartan Derivatives. Schoepf Anna M. et al., J Med Chem. 2025; 68(1):287-306


If you have any questions about this kit or any of our other offerings, contact us here.

The DHEA ELISA Assay Kit was highlighted in recent publication that explored how low psychological resilience and physical fitness predict attrition from US Marine Corps Officer Candidate School training! For more details, reference the abstract and access the full text below.


Abstract

The objective is to examine the predictors of attrition in male and female candidates undergoing a 10-week early career military training program. 1006 candidates (79.5% male, 24.7 ± 3.2 years) consented to participating in a larger study examining predictors of injury during US Marine Corps Officer Candidates School (OCS). Participants completed a blood draw, demographic and psychological characteristics questionnaires, and two fitness tests. Participants were then grouped based on successful completion of OCS or not. Associations between potential predictors and attrition were analyzed using simple logistic regression analyses, followed by a backward stepwise elimination method. Area under the curve (AUC) of the receiver operating characteristic (ROC) curve was used to determine the accuracy of the attrition prediction model. 260 candidates (25.8%) attritted over the 10-week training, with the highest number of discharges during week 5. Musculoskeletal injury (MSKI) was the most common cause of attrition (30%), followed by non-MSKI medical (21.5%), and volitional withdrawals (19.6%). Sex, body mass index (BMI), resilience, initial physical fitness test score, combat fitness test (CFT) score, and prior military service were all significantly associated with attrition from OCS (all p < .05). The final prediction model of attrition included CFT score (p = .027) and resilience (p = .018). Multiple demographic, psychological, and fitness characteristics are associated with attrition from an early career military training course (OCS) and may be utilized as part of early screening procedures to identify and provide guidance for individuals at risk for not completing OCS.


If you have any questions about this product or any of our other offerings, contact us here.


Free soluble RANKL (sRANKL), the unbound and bioactive form of the receptor activator of nuclear factor kappa-Β ligand, has gained attention for its roles beyond bone remodeling and immune responses. In the context of male reproductive physiology, free sRANKL interacts with its receptor RANK, which is expressed in testicular cells, including Sertoli and Leydig cells. This interaction influences several critical processes such as Sertoli cell maturation, germ cell survival, and testosterone synthesis. Sertoli cells provide essential support and nutrients to developing sperm cells, while Leydig cells are responsible for androgen production. Therefore, the presence and activity of free sRANKL in the testicular microenvironment are essential for maintaining optimal spermatogenesis and endocrine function.

Biomedica’s Free Soluble RANKL (sRANKL) ELISA Assay Kit was highlighted in 2 recent studies! Both studies identified RANKL (receptor activator of NF-kB ligand) signaling as a regulator of male reproductive function and discovering that Denosumab stimulates spermatogenesis in infertile men. Click below for the full publications, where you can find the abstracts and key findings!

Andreassen, Christine H., et al. “Denosumab stimulates spermatogenesis in infertile men with preserved Sertoli cell capacity.” Cell Reports Medicine, vol. 5, no. 10, Oct. 2024, p. 101783, https://doi.org/10.1016/j.xcrm.2024.101783.

Blomberg Jensen, Martin, et al. “Rankl regulates male reproductive function.” Nature Communications, vol. 12, no. 1, 23 Apr. 2021, https://doi.org/10.1038/s41467-021-22734-8.


If you have any questions about this kit or any of our other offerings, contact us here.

The Dopamine ELISA Assay Kit was featured in a new study that focused on the role of Vitamin D3 in the mitigation of sodium arsenite induced neurotoxicity in male rats. Check out the abstract and full text!


Abstract

Arsenic is associated with various neurological disorders, notably affecting memory and cognitive functions. The current study examined the protective effects of vitamin D3 (Vit. D3) in countering oxidative stress, neuroinflammation and apoptosis induced by sodium arsenite (SA) in the cerebral cortex of rats. Male Wistar rats were subjected to a daily oral administration of sodium arsenite (NaAsO2, SA) at a dosage of 5 mg/kg, along with 500 IU/kg of Vit. D3, and a combination of both substances for four weeks. The results indicated that Vit. D3 effectively mitigated the SA-induced increase in oxidative stress markers, thiobarbituric acid reactive substances (TBARS) and nitric oxide (NO), the decrease in antioxidants (reduced glutathione; GSH, superoxide dismutase; SOD, catalase; CAT, and glutathione peroxidase; GPx), as well as the increase in pro-inflammatory markers including, tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and amyloid-beta (Aβ)1–42. Furthermore, Vit. D3 reversed the alterations in the neurochemicals acetylcholinesterase (AchE), monoamine oxidase (MAO), dopamine (DA), and acetylcholine (Ach) and ameliorated the histopathological changes in the cerebral cortex. Moreover, immunohistochemical analyses revealed that Vit. D3 reduced the SA-induced overexpression of cerebral cysteine aspartate-specific protease-3 (caspase-3) and glial fibrillary acidic protein (GFAP) in the cerebral cortex of male rats. Consequently, the co-administration of Vit. D3 can protect the cerebral cortex against SA-induced neurotoxicity, primarily through its antioxidant, anti-inflammatory, anti-apoptotic, and anti-astrogliosis effects.

Abdou, Heba Mohamed, et al. “Role of vitamin D3 in mitigating sodium arsenite-induced neurotoxicity in male rats.” Toxicology Research, vol. 13, no. 6, 5 Nov. 2024, https://doi.org/10.1093/toxres/tfae203.


If you have any questions about this kit or any of our other offerings, contact us here.

The Progesterone ELISA Assay Kit was utilized in a recent publication! The publication explored menstrual effects on thermoregulation while exercising in the heat.  Check out the abstract and full text!


Abstract

Women may be challenged to maintain thermoregulation due to hormonal changes associated with the menstrual cycle. The purpose of this study was to assess the effect of the menstrual cycle phase on core temperature, hydration status, and perceived exertion while exercising under uncompensable heat gain. Eleven eumenorrheic women (24.4 ± 1.1 yrs, 65.7 ± 2.4 kg, 22.7 ± 1.5% body fat) walked for two 180-min trials in a heat chamber (35 °C and 30% relative humidity) during early-follicular (EF) and mid-luteal (ML) phases. Subjects completed three intervals of 50 min of exercise at 50% VO2max. Physiological strain index (PSI), core temperature (TC), perceived heat (PH), and rating of perceived exertion (RPE) were measured throughout both trials. Nude body weight (NBW) and blood samples were collected pre- and post-trial. Blood samples were analyzed for hematocrit (Hct), hemoglobin (Hb), serum estrogen, progesterone, and aldosterone. NBW showed a main effect of time (p = 0.002, ηp2 = 0.62). Aldosterone showed main effect of time (p = 0.004, ηp2 = 0.59) and phase (p = 0.014, ηp2 = 0.47), peaking post exercise in both EF and ML (527.6.1 ± 89.0 pg·mL−1 vs 827.4 ± 129.5 pg mL−1 respectively, p = 0.014). Estradiol and progesterone showed main effects of phase (p = 0.007, ηp2 = 0.53; p = 0.045, ηp2 = 0.30) but not time (p = 0.68, p = 0.32). TC showed main effect of time (p < 0.001, ηp2 = 0.89) and phase, peaking at 170 min (EF: 37.8 ± 0.1 °C vs. ML: 38.0 ± 0.1 °C, p = 0.032, ηp2 = 0.38). Main effect of time was seen for PSI (p = 0.002, ηp2 = 0.88), PH (p = 0.004, ηp2 = 0.66), and RPE (p = 0.026, ηp2 = 0.80). Sweat rate, Hct, Hb, and percent dehydration were not different between the phases. In conclusion, subjects demonstrated elevated Tc and basal aldosterone in ML corresponding with elevations in estrogen and progesterone. Aldosterone significantly increased following exercise in the heat but remained elevated in ML. These results indicate that elevated Tc during ML is maintained during exercise in the heat despite similar perceived heat and effort between phases.

Christison, Katherine S., et al. “Menstrual cycle effects on thermoregulation while exercising in the heat.” Journal of Thermal Biology, vol. 127, Jan. 2025, p. 104036, https://doi.org/10.1016/j.jtherbio.2024.104036.


If you have any questions about this kit or any of our other offerings, contact us here.


Osteoprotegerin (OPG) is a glycoprotein that plays a crucial role in regulating bone metabolism. It is a decoy receptor for the receptor activator of nuclear factor-kappa B ligand (RANKL), which is involved in the process of bone resorption. OPG is primarily produced by osteoblasts (bone-forming cells) but can also be found in other tissues like endothelial cells, smooth muscle cells, and certain immune cells.

OPG is an important regulator not just for bone metabolism but also in inflammation. It modulates immune cell activity, cytokine production, and tissue remodeling in response to inflammation. Elevated OPG levels can be a sign of ongoing inflammatory processes in diseases such as rheumatoid arthritis, atherosclerosis, and other autoimmune disorders.

Biomedica’s Osteoprotegerin ELISA Assay Kit (BI-20403) was highlighted in a recent study! The study assessed serum OPG levels during acute inflammatory states induced by a bacterial or viral infection in children. The researchers investigated whether OPG increases during acute inflammatory states and if its levels correlate with other biomarkers. Click below for the full publication, where you can find the abstract and key findings!

Giannakopoulos, Aristeidis, et al. “Osteoprotegerin in infection-induced acute inflammatory states in children.” Heliyon, vol. 10, no. 6, Mar. 2024, https://doi.org/10.1016/j.heliyon.2024.e27565.


If you have any questions about this kit or any of our other offerings, contact us here.