The Total Complement Functional Screen ELISA was utilized in a recent publication that sought to understand if the ability of Borrelia burgdorferi bacteria (which can cause Lyme disease) to resist the human immune system plays a big role in whether they cause widespread infections in humans. Check out the abstract and full article below.
Abstract
Reservoir host associations have been observed among and within Borrelia genospecies, and host complement-mediated killing is a major determinant in these interactions. In North America, only a subset of Borrelia burgdorferi lineages cause the majority of disseminated infections in humans. We hypothesize that differential resistance to human complement-mediated killing may be a major phenotypic determinant of whether a lineage can establish systemic infection. As a corollary, we hypothesize that borreliacidal action may differ among human subjects. To test these hypotheses, we isolated primary B. burgdorferi clones from field-collected ticks and determined whether the killing effects of human serum differed among those clones in vitro and/or whether these effects were consistent among human sera. Clones associated with human invasiveness did not show higher survival in human serum compared to noninvasive clones. These results indicate that differential complement-mediated killing of B. burgdorferi lineages is not a determinant of invasiveness in humans. Only one significant difference in the survivorship of individual clones incubated in different human sera was detected, suggesting that complement-mediated killing of B. burgdorferi is usually similar among humans. Mechanisms other than differential human complement-mediated killing of B. burgdorferi lineages likely explain why only certain lineages cause the majority of disseminated human infections.
If you have any questions about the Total Complement Functional Screen ELISA or any of our other offerings, contact us here.