

## Anti-Intrinsic Factor

**REF 3600**

Enzyme immunoassay for the determination of IgG antibodies against intrinsic factor in human serum



GA Generic Assays GmbH  
Ludwig-Erhard-Ring 3  
15827 Blankenfelde-Mahlow OT Dahlewitz  
Germany  
Phone: +49 33708 9286 0  
Fax: +49 33708 4417 25  
info@genericassays.com  
www.genericassays.com



### 1 Intended Purpose

The Anti-Intrinsic Factor is a quantitative immunoassay for the determination of IgG antibodies against intrinsic factor in human serum.

The Anti-Intrinsic Factor is intended as an aid in the diagnosis of pernicious anemia and autoimmune gastritis in conjunction with other clinical and laboratory findings.

The immunoassay is designed for manual professional *in vitro* diagnostic use.

### 2 Diagnostic Relevance

Intrinsic factor (IF), a glycoprotein containing sialic acid, plays an important role in the absorption of vitamin B12 (extrinsic factor) in the digestive tract. IF is produced by parietal cells located in the stomach mucosa. Following secretion into the stomach IF binds to vitamin B12 that was ingested with food. The vitamin B12-IF complex is absorbed in the ileum by binding to a specific receptor to IF. After absorption vitamin B12 is released into the blood stream where it binds to transcobalamin. Reduced production of IF and/or impairment of its transport function bring about a deficiency in vitamin B12 that leads to the development of Biermer's anemia.

The chronic atrophic gastritis of type A (5% of all forms) is characterized by autoimmune processes that lead to the destruction of parietal cells and the production of autoantibodies to both parietal cells and IF. The gastritis of type A occurs frequently in context with other autoimmune polyendocrinic disorders (e.g. Hashimoto's thyroiditis, Addison's disease, insulin-dependent diabetes mellitus). Patients suffering from gastritis of type A face an elevated risk of carcinoma.

According to their binding sites autoantibodies to IF are divided into two types. Type 1 autoantibodies interact with the binding site for vitamin B12 and, therefore, interfere with the binding of vitamin B12 to the IF in the stomach. Otherwise, type 2 autoantibodies block the binding of both IF and vitamin B12-IF complexes to the specific receptor in the ileum by reacting with the corresponding site on the IF. In contrast to RIA methods based on radioactive labeled vitamin B12 Anti-intrinsic factor Elisa determines both types of autoantibodies to IF and is not influenced by high concentrations of vitamin B12 in the sample.

### 3 Test Principle

The ELISA (Enzyme Linked Immunosorbent Assay) is an immunoassay for the determination of specific antibodies. The strips of the microtiter plate are coated with test-specific antigens. If antibodies are present in the patient's sample, they bind to the antigens. A secondary antibody conjugated with the enzyme horseradish peroxidase detects the generated immune complex. A colorless substrate is converted into the colored product. The signal intensity of the reaction product is proportional to the antibody activity in the sample. After stopping the signal intensity of the reaction product is measured photometrically.

### 4 Test Components

| Component                                                               | Description                                                                                                                                            |
|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Microtiter plate</b><br><b>A Ag   96</b><br>1 piece                  | 12 breakable microtiter strips (ready-to-use), 8 wells per strip, each well coated with recombinant human intrinsic factor                             |
| <b>Calibrator</b><br><b>0 – 4 CAL</b><br>5 x 1 mL, white cap            | Colored dilutions of human serum (ready-to-use; contains ProClin 950)<br><br>The antibody activities are indicated on the quality control certificate. |
| <b>Negative control</b><br><b>N CONTROL   -</b><br>1 x 1 mL, green cap  | Colored dilution of human serum (ready-to-use; contains ProClin 950)<br><br>The antibody activity is indicated on the quality control certificate.     |
| <b>Positive control</b><br><b>P CONTROL   +</b><br>1 x 1 mL, red cap    | Colored dilution of human serum (ready-to-use; contains ProClin 950)<br><br>The antibody activity is indicated on the quality control certificate.     |
| <b>Sample diluent</b><br><b>C DIL</b><br>1 x 100 mL, black cap          | Colored solution (ready-to-use; contains ProClin 950)                                                                                                  |
| <b>Wash buffer</b><br><b>B BUF WASH 10x</b><br>1 x 100 mL, white cap    | Concentrated solution (10x; contains ProClin 950)                                                                                                      |
| <b>Conjugate IgG</b><br><b>D CONJ</b><br>1 x 15 mL, red cap             | Colored solution of polyclonal anti-human IgG antibody conjugated to horseradish peroxidase (ready-to-use; contains ProClin 950)                       |
| <b>Substrate</b><br><b>E SOLN   TMB</b><br>1 x 15 mL, blue cap          | 3,3',5,5'-Tetramethylbenzidin (ready-to-use)                                                                                                           |
| <b>Stop solution</b><br><b>F H2SO4   0.25M</b><br>1 x 15 mL, yellow cap | 0.25 M Sulfuric acid (ready-to-use)                                                                                                                    |
| <b>Adhesive Foil</b><br>2 pieces                                        | -                                                                                                                                                      |
| <b>QC Certificate</b><br>1 piece                                        | -                                                                                                                                                      |

## 5 Materials required but not provided

- Common laboratory equipment
- Precision pipettes (5 – 1000 µL), multi-channel pipettes (100 – 1000 µL) and disposable pipette tips
- Graduated cylinders (100 – 1000 mL)
- Sample tubes for the preparation of dilutions
- Vortex mixer or other rotators
- Microtiter plate washer or wash comb
- Microtiter plate reader with optical filters for 450 nm and 620 nm or 690 nm
- Adsorbent paper or paper towel
- Distilled or de-ionized water

## 6 Storage and Stability

Upon receipt, all test components must be stored at 2 °C to 8 °C, preferably in the original kit box. If stored properly in their original containers, all components are stable until their expiry date. All components are stable for at least 2 months after opening when stored properly at 2 °C to 8 °C.

## 7 General Information

This product is for *in vitro* diagnostic use only. The instructions for use must be carefully read before use. They are valid only for the present product with the given composition and must be strictly followed to ensure reliable test results. Deviations can lead to erroneous test results. Components must not be exchanged by test reagents of different lots or of other manufacturers.

Contamination of reagents must be avoided by use of aseptic techniques when removing aliquots from the vials. After use, reagent vials must be tightly closed with their corresponding caps.

Cross-contamination of samples or reagents can lead to inconsistent test results and must be avoided by use of consistent pipetting techniques.

Exposure of reagents to strong light must be avoided throughout the entire test procedure and storage.

Insufficient washing will result in poor precision and elevated measurement signals. After each washing step any residual fluid has to be removed completely.

## 8 Preparation

### 8.1 Preparation of Reagents

All components including the microtiter plate must be brought to room temperature (RT: 18 °C to 25 °C) before use for at least 30 min. All liquid components must be mixed gently to ensure homogeneity.

#### 8.1.1 Microtiter Plate

The microtiter plate is sealed in an aluminium bag. Unused test strips should always be stored refrigerated and protected from moisture with the desiccant in the properly sealed aluminum bag. Carefully resealed, the test strips can be used for 8 weeks after opening.

#### 8.1.2 Calibrators

The calibrators are ready-to-use and must not be diluted any further. Calibrators must be used in each test run.

#### 8.1.3 Controls

The positive and the negative controls are ready-to-use and must not be diluted any further. Controls must be used in each test run.

Laboratories can also validate their own control samples and use them alternatively.

#### 8.1.4 Sample Diluent

The sample diluent is ready-to-use.

#### 8.1.5 Wash Buffer

The wash buffer is concentrated and must be diluted 1:10 with distilled water before use (e. g. 100 mL + 900 mL). A sufficient amount of washing solution must be prepared. The diluted washing solution can be stored at 2 °C to 8 °C up to 30 days.

#### 8.1.6 Conjugate

The conjugate is ready-to-use and stable up to 8 weeks after opening when stored at 2 °C to 8 °C.

#### 8.1.7 Substrate

The substrate is ready-to-use. Exposure of the substrate solution to strong light should be avoided.

#### 8.1.8 Stop Solution

The stop solution is ready-to-use.

### 8.2 Preparation of Samples

#### 8.2.1 Sample Material

The use of freshly collected serum from blood taken by venipuncture is recommended. The use of icteric, lipemic, hemolytic or bacterially contaminated samples should be avoided. Insoluble substances must be removed from the sample by centrifugation. Samples must not be thermally inactivated.

#### 8.2.2 Sample Dilution

The samples must be diluted 1:101 (e. g. 10 µL + 1000 µL) with sample diluent and mixed thoroughly. Building of foam should be avoided.

#### 8.2.3 Sample Storage

Samples may be kept at 2 °C to 8 °C up to three days. Long-term storage requires -20 °C. Repeated freezing and thawing should be avoided. For multiple use, samples should be aliquoted and kept at -20 °C.

## 9 Test Performance

### 9.1 Pipetting Scheme

The following pipetting scheme is recommended:

|   | 1        | 2        | 3   | 4 |
|---|----------|----------|-----|---|
| A | CAL 0    | Sample 2 |     |   |
| B | CAL 1    | Sample 3 |     |   |
| C | CAL 2    | Sample 4 |     |   |
| D | CAL 3    | Sample 5 |     |   |
| E | CAL 4    |          | ... |   |
| F | N        |          | ... |   |
| G | P        |          | ... |   |
| H | Sample 1 |          | ... |   |

### 9.2 Procedure

The indicated incubation times and temperatures must be adhered to and significant time shifts during pipetting samples and reagents must be avoided. The microtiter plate should be shortly shaken after addition of reagents.

| Step                                                     | Description                                                                |  |
|----------------------------------------------------------|----------------------------------------------------------------------------|--|
| 1. Addition of calibrators, controls and diluted samples | Add 100 µL ready-to-use calibrators, controls and diluted samples per well |  |
| 2. Incubation                                            | Cover the plate and incubate for 60 min. at RT                             |  |

|                              |                                                                                                                                                                                                          |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3. Wash cycle                | Aspirate the solution and wash 3 times with 300 $\mu$ L washing solution with at least 5 seconds soaking time each; dry by tapping the microtiter plate on a paper towel to remove any residual droplets |
| 4. Addition of conjugate     | Add 100 $\mu$ L ready-to-use conjugate to each well                                                                                                                                                      |
| 5. Incubation                | Cover the plate and incubate for 30 min. at RT                                                                                                                                                           |
| 6. Wash cycle                | Aspirate the solution and wash 3 times with 300 $\mu$ L washing solution with at least 5 seconds soaking time each; dry by tapping the microtiter plate on a paper towel to remove any residual droplets |
| 7. Addition of substrate     | Add 100 $\mu$ L ready-to-use substrate to each well                                                                                                                                                      |
| 8. Incubation                | Cover the plate and incubate for 15 min. in the dark at RT                                                                                                                                               |
| 9. Addition of Stop Solution | Add 100 $\mu$ L ready-to-use stop solution to each well                                                                                                                                                  |
| 10. Analysis                 | Read optical density (OD) at 450 nm versus 620 or 690 nm within 30 min. after stopping the reaction                                                                                                      |

### 9.3 Automation

Automated processing of the immunoassays must be performed analogous to manual use and validated by the user.

## 10 Test Evaluation

### 10.1 Metrological Traceability

The immunoassay is calibrated using an internal reference sample. Quantitative results are expressed in U/mL.

### 10.2 Standard Curve

For generation of a standard curve, the optical signals (optical density, OD) of the calibrators are plotted against their antibody activities and correlated by a 4-parameter logistic (4 PL) fit. Antibody activities of unknown samples can be derived directly from their optical signals by use of the generated standard curve.

### 10.3 Criteria of Validity

Test runs are only valid if the following criteria of validity are fulfilled:

- OD CAL 0 < CAL 1 < CAL 2 < CAL 3 < CAL 4
- OD CAL 4 > 1.2
- The negative control must be evaluated negative.
- The positive control must be evaluated positive and present an antibody activity within the validity range indicated on the quality control certificate.

If these criteria are not met, the test is not valid and must be repeated.

### 10.4 Troubleshooting

In case of an invalid test run, the expiry dates and storage conditions, incubation times and temperatures, and precise calibration of all instruments used should be verified. If no reason for an invalid test run could be identified, please contact the supplier or manufacturer of the product.

### 10.5 Reference Ranges

The reference ranges are indicated below:

| Interpretation                 |            |
|--------------------------------|------------|
| Antibody activity < 10 U/mL    | negative   |
| Antibody activity 10 – 15 U/mL | borderline |
| Antibody activity > 15 U/mL    | positive   |

As a result of different seroprevalences in individual regions, each laboratory should verify the reference ranges by own analysis and adapt, if necessary.

### 10.6 Interpretation of Test Results

A positive test result indicates the presence of specific antibodies. A negative result indicates the absence of specific antibodies, but does not exclude the possibility of an autoimmune reaction. In case of a borderline test result, a reliable evaluation is not possible.

### 10.7 Limitations of the Method

The interpretation of test results must always be considered in combination with the clinical picture of the patient. The diagnosis should not be based on the results of a sole diagnostic method. All clinical and laboratory findings should be evaluated to state a diagnosis. For confirmation, further investigations should be carried out.

## 11 Performance Characteristics

### 11.1 Analytical Performance Characteristics

#### 11.1.1 Precision

The precision of test results was assessed by the determination of the intra- and interassay variation by the analysis of multiple samples with different antibody activities.

|          | Intraassay Precision |        | Interassay Precision |        |
|----------|----------------------|--------|----------------------|--------|
|          | U/mL                 | CV (%) | U/mL                 | CV (%) |
| Sample 1 | 181.3                | 4.2    | 190.9                | 4.7    |
| Sample 2 | 60.3                 | 3.3    | 62.8                 | 3.7    |
| Sample 3 | 18.9                 | 3.6    | 19.6                 | 2.4    |

#### 11.1.2 Measurement Range

Reliable accuracy, trueness, precision, linearity and recovery of test results have been observed within the measurement range of the assay from the LoQ to the upper calibrator in comprehensive studies. Samples with test results above the upper calibrator should be reported as >max. Samples with test results below the LoQ should be reported as <min. If test results above the upper calibrator are observed, the samples may be tested at a higher dilution. The resulting antibody activity must be multiplied with the additional dilution factor.

### 11.2 Diagnostic Performance Characteristics

#### 11.2.1 Diagnostic Sensitivity and Specificity

Sensitivity and specificity were assessed by the analysis of 115 samples from patients with pernicious anemia as well as from unselected blood donors.

| Diagnostic Performance |        |
|------------------------|--------|
| Sensitivity            | 89 %   |
| Specificity            | > 99 % |

## 12 Warnings and Precautions

The product is designed exclusively for *in vitro* diagnostic use by qualified, authorized and trained personnel. All test components and human samples should be handled with care as potentially hazardous. Good laboratory practices (GLP) and all relevant regulations should be adhered to.

In case the product is damaged or product information including labelling is wrong or incorrect, please contact the manufacturer or supplier.

This product contains preparations of human and / or animal origin. Any material derived from human body fluids or organs used for the preparation of components were tested and found negative for HBsAg (Hepatitis B-Virus-surface Antigen) and anti-HIV as well as anti-HCV antibodies. However, all components and all patient samples should be handled as potentially hazardous in accordance with national laws and appropriate guidelines on biological safety.

As the product contains potentially hazardous materials, the following precautions should be followed: Do not smoke, eat or drink while handling kit material or samples. Avoid direct contact to kit material or samples by wearing protective gloves laboratory coat and safety glasses. Never pipette material by mouth. Wipe up spills promptly and wash the affected surface thoroughly with a decontaminant. Wash hands thoroughly after use.

Some of the reagents contain ProClin (< 1.0 %) as a preservative, may cause skin sensitization (H317) and must not be swallowed or allowed to come into contact with skin or mucosa (P280, P333+P313).

The information in the safety data sheet on possible hazards, first aid measures, measures in the event of the unintentional release of large quantities, handling and storage, personal protective equipment, information on disposal as well as information on toxicology must be observed.

Any serious incident that has occurred in relation to the device shall be reported to the manufacturer and the competent authority of the member state in which the user and/or the patient is established.

## 13 Disposal

For decontamination and disposal the recommendations of the CDC as well as the relevant local and national environmental guidelines and regulations should be adhered to. Samples, potentially contaminated materials and infectious waste must be decontaminated, e.g. by autoclaving for 20 min. at 121 °C.

## 14 References

- Waters HM, Dawson DW, Horwarth JE, Geary CG: High incidence of type II autoantibodies in pernicious anaemia. *J. Clin. Pathol.* 1993, 46, 45 – 7.
- Waters HM, Smith C, Horwarth JE, Dawson DW, Delamore IW: New enzyme immunoassay for detecting total, type I, and type II intrinsic factor antibodies. *J. Clin. Pathol.* 1989, 42, 307 – 12.
- Morawiec-Szymonik E, Foltyn W, Marek B, Głogowska-Szeląg J, Kos-Kudła B, Kajdaniuk D. Antibodies involved in the development of pernicious anemia and other autoimmune diseases. *Pol. Arch. Intern. Med.* 2020, 130, 31 – 7.

## 15 Symbols

|  |                                           |
|--|-------------------------------------------|
|  | Manufacturer                              |
|  | CE marking of conformity                  |
|  | <i>In vitro</i> diagnostic medical device |
|  | Catalogue number                          |
|  | Unique device identifier                  |
|  | Batch code                                |
|  | Temperature limit                         |
|  | Use-by date                               |
|  | Consult instructions for use              |
|  | Contains sufficient for <n> tests         |
|  | Do not re-use                             |
|  | Caution                                   |
|  | Warning                                   |
|  | Biological risk                           |
|  | Keep away from sunlight                   |
|  | Microtiter plate                          |
|  | Calibrator                                |
|  | Negative control                          |
|  | Positive control                          |
|  | Sample diluent                            |
|  | Conjugate                                 |
|  | Wash buffer                               |
|  | Substrate                                 |
|  | Stop solution                             |

## 16 Changes

| Changes in current Instructions for Use |                                                                                                               |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Current Version                         | 003/07.2022                                                                                                   |
| Summary of Changes                      | Editorial changes; the graphical symbol for warning has been added in conformity with EU Regulation 1272/2008 |