Amyloid Beta Protein Human Synthetic Amyloid Beta 1-42 Pre-formed Fibrils Catalog No. SPR-487 Discovery through Partnership | Excellence through Quality distributed in the US/Canada by: EAGLE BIOSCIENCES, INC. 20A NW Blvd, Suite 112 Nashua, NH 03063 Phone: 617-419-2019 FAX: 617-419-1110 www.EagleBio.com info@eaglebio.com ## **Product Name** 42 amino acids Amyloid Beta Protein | Description | |--| | Human Synthetic Amyloid Beta 1-42 Pre-formed Fibrils | | Applications | | WB, In vivo Assay, In vitro Assay | | Concentration | | Lot/batch specific. See included datasheet. | | Conjugates | | No tag | | Nature | | Synthetic (TFA preparation) | | Species | | Human | | Expression System | | N/A | | Amino Acid Sequence | | DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA | | Purity | | >95% | | Protein Length | | | #### https://www.stressmarq.com/products/protein/amyloid-beta-protein-spr-487/?v=7516fd43adaa #### Field Of Use Not for use in humans. Not for use in diagnostics or therapeutics. For in vitro research use only. # **Properties** ### **Storage Buffer** 10 mM HCI + 2% DMSO ## **Storage Temperature** -80°C ## **Shipping Temperature** Dry Ice. Shipping note: Product will be shipped separately from other products purchased in the same order. #### **Purification** N/A #### **Cite This Product** Human Synthetic Amyloid Beta Pre-formed Fibrils (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SPR-487) ## **Certificate Of Analysis** Certified >95% pure using mass spec and HPLC. # **Biological Description** #### **Alternative Names** Abeta Protein, Abeta peptide, Amyloid beta peptide, Beta amyloid peptide, amyloid beta precursor protein peptide, APP, Abeta Pre-formed Fibrils Protein, Abeta Pre-formed Fibrils Protein, Amyloid beta peptide, Beta amyloid peptide, amyloid beta precursor protein peptide, APP, Abeta Protein PFF, Abeta peptide PFF, Beta amyloid PFF #### **Research Areas** Alzheimer's Disease, Amyloid, Neurodegeneration, Neuroscience ## **Cellular Localization** Cell membrane, Intracellular Vesicles | Gene ID | | | | |------------|--|--|--| | 351 | | | | | Swiss Prot | | | | | P05067 | | | | ## **Scientific Background** Our Amyloid Beta 1-42 (A β 42) Pre-formed Fibrils are generated from Amyloid Beta Peptide 1-42 pre-treated with 1,1,1,3,3,3-Hexafluoro-2-propanol (HFIP) using a previously published method (1,2). Our A β 42 fibrils present as long strands when observed under TEM and AFM, and have a unique high molecular weight signal on a Western Blot with an anti-amyloid beta antibody. Our A β 42 fibrils were also demonstrated to be toxic to primary rat cortical neurons in a dose-dependent manner after an initial sonication step. In the brain, amyloid beta peptide (A β) is generated by protease cleavage of amyloid precursor protein (APP), which aggregates into oligomers, protofibrils, fibrils and ultimately plaques in neurodegenerative diseases. The accumulation of A β plaques in the brain is considered a hallmark of Alzheimer's disease (AD), and most of the drugs tested for AD in the past 20 years have targeted amyloid beta accumulation (3). Soluble A β oligomers isolated from the brains of AD patients or those generated in vitro potently impaired synapse structure and function (4). A β oligomers generated in vitro were toxic to PC12 cells (2) and SH-SY5Y cells (5). A β was demonstrated to interact with tauopathies to affect neurodegeneration in AD patients (6) and accumulations of A β were shown to be associated with lower survival rates in Parkinson's disease patients with dementia (7). #### References - 1. Stine et al. 2003. JBC. 278(13):11612-22. doi: 10.1074/jbc.M210207200 - 2. Chromy et al. 2003. Biochemistry. 42:12749-12760. doi: 10.1021/bi030029g - 3. Panza et al. 2019. Nat Rev Neurol. 15:73-88 https://doi.org/10.1038/s41582-018-0116-6 - 4. Shankar et al. 2008. Nat Med. 14(8):837-842. doi: 10.1038/nm1782 - 5. Kayed et al. 2003. Science. 300(5618): 486-489. doi: 10.1126/science.1079469 - 6. Want et al. 2016. JAMA Neurol. 73(9):1070-7. doi: 10.1001/jamaneurol.2016.2078 - 7. Kotzbauer et al. 2012. Arch Neurol. 69(10): 1326-1331. doi: 10.1001/archneurol.2012.1608 # **Product Images** TEM of amyloid beta 1-42 monomers (SPR-485, left), oligomers (SPR-488, middle) and fibrils (SPR-487, right). Negative stain transmission electron microscopy images acquired at 80 Kv on carbon coated 400 mesh copper grids using phosphotungstic acid and uranyl acetate stain. Scale bar = 100 nm. Western blot of amyloid beta 1-42 monomers (SPR-485, left), oligomers (SPR-488, middle) and fibrils (SPR-487, right) using anti-amyloid beta 6E10 antibody. Amyloid beta constructs at 160 pmol were run on 4-12% Bis-Tris SDS-PAGE, transferred to nitrocellulose in the presence of 0.02% v/v Tween-20, and blotted with 1:1000 mouse 6E10 primary antibody (Biolegend). Oligomers observed under TEM/AFM appear as distinct dimer/trimer bands at ~37-75 kDa on Western Blot with 6E10 antibody (middle). Fibrils observed under TEM/AFM appear as a distinct signal at greater than 100 kDa in the stacking gel (right). Amyloid beta 1-42 oligomers (SPR-488) and fibrils (SPR-487) show a dose-dependent toxicity to primary rat cortical neurons, but not monomers (SPR-485). Survival of rat primary cortical neurons 14 days after treatment with different concentrations of (A) monomers, (B) oligomers or (C) fibrils quantified by MAP2 positive neurons and expressed as a percentage of control. Fibrils and respective vehicle controls were initially sonicated in a Bioruptor. Test conditions were run in the same plate as untreated control and vehicle controls, which consisted of buffer without amyloid beta 1-42 protein. Data expressed as mean +/- s.e.m. (n=6). A global analysis of the data was performed using a one-way ANOVA followed by Dunnett's test; ** p<0.01 stats vs control; ## p<0.01, #### p<0.0001 stats vs vehicle control. § represents untreated control condition. AFM of amyloid beta 1-42 monomers (SPR-485, left), oligomers (SPR-488, middle) and fibrils (SPR-487, right). Atomic force microscopy analysis of 1.0 mg/mL samples diluted to 0.1 mg/mL in dH2O, mounted on freshly cleaved mica, washed, dried and analyzed with tapping mode. Representative images are 2.5 x 2.5 μ m x-y with a z-range of 10 nm. # **Product Citations (0)** Currently there are no citations for this product. # **Reviews** There are no reviews yet.