AgarSqueezer – a cell confiner

Confine your cells under agarose nanopillars to study cell behaviour

AgarSqueezer is a device designed to study cell response to short and long-term mechanical confinement within a physiological rigidity range.

Compression height:

- 5 µm
- 30 µm
- 100 µm

Key features

- 1. Instant & homogeneous cell confinement.
- 2. Physiological rigidity.

The mechanical properties of agarose can reproduce stiffness of the in vivo microenvironment (1-150 kPa).

3. Long-term confinement.

The porous nature of agarose facilitates nutrient and oxygen diffusion, allowing for long-term cell culture and monitoring in confined conditions (several days).

- 4. Fully compatible with in situ and ex situ **analyses.** The system is compatible with real-time dynamic imaging and all immunostaining steps can be performed in situ. Alternatively, cells can be easily collected for standard molecular biology or functional assays.
- **5. Highly flexible.** Tunable pillar height, matrix stiffness & composition and possibility to coat with ECM proteins.

Results from users

Compression of immature TF1-GFP hematopoietic

Quantification of cell morphology under confinement. (A-C): Morphology of immature TF1-GFP hematopoietic cells for control (A) and for 30 μ m and 5 μ m (B and C, respectively). Scale bar = 20

From A. Prunet et al. Lab on Chip, 2020.

Arabidopsis root cells confined in Agarsqueezer

Arabidopsis thaliana Col-0 root cells stained with Calcofluor (cell wall) and imaged with a confocal microscope either in a traditional liquid culture (left), or after 24h of confinement under the 30μm (middle) or 5µm (right) pillars.

Image credits: Léa Bogdziewiez - UPSC - SLU Sveriges lantbruksuniversitet, Sweden

5µm pillars

Original publication:

A. Prunet et al., A new agarose-based microsystem to investigate cell response to prolonged confinement, Lab on a Chip. 20:4016-4030 (2020)

