

TEST RESULTS

SAMPLE ID: Collection Date: Date Received: Report Date:

DYSBIOSIS INDEX (DI) *

1 2 3 4 5 The patient's gut microbiota is mildly dysbiotic

FUNCTIONAL IMBALANCE - BACTERIA PROFILES *

	FUNCTIONAL PROFILES	TEST RESULTS	COMMENTS
Α	Butyrate producing bacteria		Reduced levels of major butyrate producers
В	Gut mucosa protective bacteria		Reduced levels of important gut mucosa protective bacteria
С	Gut health marker		Normal level of Faecalibacterium prausnitzii, a key bacterium that promotes intestinal health
D	Gut barrier protective bacteria and potentially harmful bacteria	8	Imbalance between selected gut barrier protective and potentially harmful bacteria
Е	Pro-inflammatory bacteria		Low levels of pro-inflammatory bacteria
F	Diversity		Expected diversity

BACTERIA ABUNDANCE TABLE *

		Normal **						
۸ ۵	Actinobootorio			ęd		Elevated		
Actinobacteria		-3	-2	-1		1	2	3
100	Actinobacteria				•			
101	Actinomycetales				•			
103	Bifidobacterium spp.				•			

Bacteriodetes

201	Alistipes		•		
202	Alistipes onderdonkii			•	
203	Bacteroides fragilis		•		
204	Bacteroides pectinophilus		•		
205	Bacteroides spp.		•		
206	Bacteroides spp. & Prevotella spp.			•	
207	Bacteroides stercoris		•		
208	Bacteroides zoogleoformans				•
209	Parabacteroides johnsonii				•
210	Parabacteroides spp.				•

Firmicutes

	inicates					
300	Firmicutes			•		
302	Bacilli			•		
304	Catenibacterium mitsuokai			•		
305	Clostridia			•		
306	Clostridium methylpentosum		•			
307	Clostridium sp.			•		
308	Coprobacillus cateniformis			•		
310	Dialister invisus			•		
311	Dialister invisus & Mega- sphaera micronuciformis			•		
312	Dorea spp.			•		
313	Holdemanella biformis			•		
314	Anaerobutyricum hallii		•			

ı		Normal ** Reduced Elevated								
Fir	micutes cont.	-3	educe -2	ed -1		E 1	levate 2	ed 3		
315	[Eubacterium] rectale				•					
316	Eubacterium siraeum				•					
317	Faecalibacterium prausnitzii			•						
318	Lachnospiraceae				•					
319	Lactobacillus ruminis & Pediococcus acidilactici				•					
320	Lactobacillus spp.				•					
321	Lactobacillus spp. 2				•					
322	Phascolarctobacterium sp.				•					
323	Ruminococcus albus & R. bromii				•					
324	Ruminococcus gnavus					•				
325	Streptococcus agalactiae & [Eubacterium] rectale					•				
326	Streptococcus salivarius ssp. thermophilus & S. sanguinis				•					
327	Streptococcus salivarius ssp. thermophilus			•						
328	Streptococcus spp.				•					
329	Streptococcus spp. 2				•					
330	Veillonella spp.				•					
331	Firmicutes (various)				•					

Proteobacteria

500	Proteobacteria		•		
501	Acinetobacter junii		•		
502	Enterobacteriaceae		•		
504	Shigella spp. & Escherichia spp.		•		

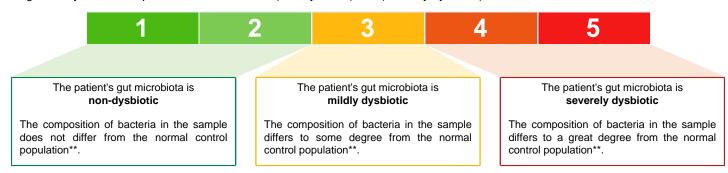
Tenericutes

601	Mycoplasma hominis				•			
-----	--------------------	--	--	--	---	--	--	--

Verrucomicrobia

701	Akkermansia muciniphila				

^{*} For a more detailed explanation of the results, please refer to pages 3-4, 'GA-map[®] Dysbiosis Test Lx - REPORT FORM SUPPLEMENT'. ** Reference population: an unselected group of non-gastrointestinal-symptomatic individuals (age 18-70).


GA-map® Dysbiosis Test Lx – REPORT FORM SUPPLEMENT

The GA-map® Dysbiosis Test Lx is used as a fecal gut microbiota DNA analysis tool to identify and characterize dysbiosis in adults.

Dysbiosis is defined as a permanent or transient imbalance in the gut microbiota composition. This imbalance could be due to an increase in potential harmful bacteria and/or a decrease in commensal bacteria. Under normal conditions the alliance of immune system and gut microbiota prevents the infiltration and proliferation of pathogenic bacteria by inducing and maintaining protective responses. The multiplication of potentially harmful bacteria in the gut may increase the permeability of the intestine, damage intestinal epithelial cells, and affect cell energy metabolism among others. Consequently, imbalances in the gut microbiota population can lead to dysfunction of the intestinal immune system and can trigger a variety of gastrointestinal disorders. Since many of the bacteria in the gut community have important functional relationships with each other, changes in a small number of them and/or in their functions could have broad effects on the individual's health state, directly impacting his/her daily life.

DYSBIOSIS INDEX (DI)

The degree of dysbiosis is reported on a scale from 1 (non-dysbiotic) to 5 (severely dysbiotic).

Clinical studies report that among a healthy population 16% of individuals have a mild dysbiosis (DI 3)¹. In patients with irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD), about 20-30% have a microbiota profile within the normal range (DI 1-2), while about 70-80% have a microbiota profile that falls outside of the normal range (DI > 2)¹. IBD patients tend to have a more severe dysbiosis than IBS patients (DI 4-5)¹.

FUNCTIONAL IMBALANCE - BACTERIA PROFILES

Each profile represents a set of unique bacteria signatures linked to their functional properties. The profiles reported as "balance" or "imbalance" may not always correspond with DI, since the profiles are limited to selected bacteria markers associated with gut functions known from literature today

The profiles are reported as \bigcirc (Balance) or \bigcirc (Imbalance), followed by a comment.

Α	Butyrate producing	g bacteria
	Description	Insufficient levels of butyrate are associated with an impaired gastrointestinal health. Butyrate is a short-chain fatty acid produced by microbial fermentation in the large intestine of humans. It is important for regulating multiple functions of gut cells, may be important for regulating inflammatory and immunological responses and plays a role in the maintenance of intestinal barrier function. Beneficial bacteria belonging to the phylum Firmicutes are major butyrate producers.
	Bacteria marker	314 - Anaerobutyricum hallii 315 - [Eubacterium] rectale 317 - Faecalibacterium prausnitzii
В	Gut mucosa prote	ctive bacteria
	Description	Mucus and mucosa-associated bacteria form a specific protective environment in the gut. A disruption of the mucosa layer may promote specific bacterial colonization and immunological responses and enhance the development of gastrointestinal diseases. Imbalance of gut mucosa protective bacteria has been associated with various gastrointestinal disorders.
	Bacteria marker	317 - Faecalibacterium prausnitzii 701 - Akkermansia muciniphila
С	Gut health marker	
	Description	Faecalibacterium prausnitzii is one of the most prevalent bacteria within the human gastrointestinal tract. It is recognized as a major butyrate producer and can promote anti-inflammatory processes and testinal barrier function. Lower levels of Faecalibacterium prausnitzii in the intestines have been associated with gastrointestinal and metabolomic disorders.
	Bacteria marker	317 - Faecalibacterium prausnitzii

Description Protective bacteria and potentially harmful bacteria Bacteria marker The intestinal epithelial barrier is not a static physical barrier but one that can interact with the gut microbiome and cells of the immune system. An imbalance between the gut barrier protective bacteria and potentially harmful bacteria may lead to gut barrier disruption and is associated with an increased susceptibility to certain diseases. Bacteria marker 317 - Faecalibacterium prausnitzii 324 - Ruminococcus gnavus 500 - Proteobacteria 504 - Shigella spp. & Escherichia spp. Be Pro-inflammatory bacteria Elevated Proteobacteria species are associated with inflammation in various - mainly gastrointestinal - disorders. In a healthy gut microbiota, their increase may promote intestinal inflammation due to molecules present on their surface which are potent triggers of inflammatory responses. Inflammation in itself may approach the growth of Proteobacteria species. Pro- inflammatory bacteria levels may thus give indications of the susceptibility of the patient to intestinal inflammation and to the possible development of gastrointestinal disorders. Bacteria marker 500 - Proteobacteria species are susceptibility of the patient to intestinal inflammation and to the possible development of gastrointestinal disorders. F Diversity Description Diversity displays the distribution of bacteria as "low" or "expected" depending on the number of different species and their abundance in the sample, calculated based on Shannon diversity index. Bacteria marker The diversity is computed using normalized fluorescent signal strengths from a selection o										
immune system. An imbalance between the gut barrier protective bacteria and potentially harmful bacteria may lead to gut barrier disruption and is associated with an increased susceptibility to certain diseases. Bacteria marker 317 - Faecalibacterium prausnitzii 324 - Ruminococcus gnavus 500 - Proteobacteria 504 - Shigella spp. & Escherichia spp. Elevated Proteobacteria species are associated with inflammation in various - mainly gastrointestinal - disorders. In a healthy gut microbiota, their increase may promote intestinal inflammation due to molecules present on their surface which are potent triggers of inflammatory responses. Inflammation in itself may also promote the growth of Proteobacteria species. Pro- inflammatory bacteria levels may thus give indications of the susceptibility of the patient to intestinal inflammation and to the possible development of gastrointestinal disorders. Bacteria marker 500 - Proteobacteria 504 - Shigella spp. & Escherichia spp. F Diversity Description Diversity displays the distribution of bacteria as "low" or "expected" depending on the number of different species and their abundance in the sample, calculated based on Shannon diversity index.	D	Gut barrier protect	tive bacteria and potentially harmful bacteria							
324 - Ruminococcus gnavus 500 - Proteobacteria 504 - Shigella spp. & Escherichia spp. E Pro-inflammatory bacteria Description Elevated Proteobacteria species are associated with inflammation in various - mainly gastrointestinal - disorders. In a healthy gut microbiota, their increase may promote intestinal inflammation due to molecules present on their surface which are potent triggers of inflammatory responses. Inflammation in itself may also promote the growth of Proteobacteria species. Pro- inflammatory bacteria levels may thus give indications of the susceptibility of the patient to intestinal inflammation and to the possible development of gastrointestinal disorders. Bacteria marker 500 - Proteobacteria 504 - Shigella spp. & Escherichia spp. F Diversity Description Diversity displays the distribution of bacteria as "low" or "expected" depending on the number of different species and their abundance in the sample, calculated based on Shannon diversity index.		Description	immune system. An imbalance between the gut barrier protective bacteria and potentially harmful bacteria may lead to gut barrier							
Description Elevated Proteobacteria species are associated with inflammation in various - mainly gastrointestinal - disorders. In a healthy gut microbiota, their increase may promote intestinal inflammation due to molecules present on their surface which are potent triggers of inflammatory responses. Inflammation in itself may also promote the growth of Proteobacteria species. Pro- inflammatory bacteria levels may thus give indications of the susceptibility of the patient to intestinal inflammation and to the possible development of gastrointestinal disorders. Bacteria marker 500 - Proteobacteria 504 - Shigella spp. & Escherichia spp. F Diversity Description Diversity displays the distribution of bacteria as "low" or "expected" depending on the number of different species and their abundance in the sample, calculated based on Shannon diversity index.		Bacteria marker	324 - Ruminococcus gnavus 500 - Proteobacteria							
microbiota, their increase may promote intestinal inflammation due to molecules present on their surface which are potent triggers of inflammatory responses. Inflammation in itself may also promote the growth of Proteobacteria species. Pro- inflammatory bacteria levels may thus give indications of the susceptibility of the patient to intestinal inflammation and to the possible development of gastrointestinal disorders. Bacteria marker 500 - Proteobacteria 504 - Shigella spp. & Escherichia spp. F Diversity Description Diversity displays the distribution of bacteria as "low" or "expected" depending on the number of different species and their abundance in the sample, calculated based on Shannon diversity index.	Е	Pro-inflammatory	bacteria							
504 - Shigella spp. & Escherichia spp. F Diversity Description Diversity displays the distribution of bacteria as "low" or "expected" depending on the number of different species and their abundance in the sample, calculated based on Shannon diversity index.		Description	microbiota, their increase may promote intestinal inflammation due to molecules present on their surface which are potent triggers of inflammatory responses. Inflammation in itself may also promote the growth of Proteobacteria species. Pro- inflammatory bacteria levels may thus give indications of the susceptibility of the patient to intestinal inflammation and to the possible							
Description Diversity displays the distribution of bacteria as "low" or "expected" depending on the number of different species and their abundance in the sample, calculated based on Shannon diversity index.		Bacteria marker								
abundance in the sample, calculated based on Shannon diversity index.	F	Diversity								
Bacteria marker The diversity is computed using normalized fluorescent signal strengths from a selection of 28 uncorrelated bacteria markers.		Description								
		Bacteria marker	The diversity is computed using normalized fluorescent signal strengths from a selection of 28 uncorrelated bacteria markers.							

THE ABUNDANCE TABLE OF PRESELECTED BACTERIA MARKERS

The results are presented in an easy-to-read abundance table of 48 preselected bacteria markers. Some bacteria markers are specific for one bacterial species (e.g. *Akkermansia muciniphila*), while others cover groups of bacteria (e.g. phylum, Proteobacteria). The selected bacteria have proven to be of high importance and clinically relevant for gut health and disorders in the literature and in laboratory testing.

		Normal **							
Varrusamiarabia			Reduced			Elevated			
Verrucomicrobia		-3	-2	-1		1	2	3	
701	Akkermansia muciniphila				•				

- o The black dot indicates the result of the analysis.
- Each bacteria marker is assigned a unique identification number (e.g. GA ID: 701 Akkermansia muciniphila)
- Bacteria signal levels are reported on a scale from -3 (strongly reduced levels of the bacteria) to +3 (strongly elevated levels of the bacteria).
- o The light blue center field indicates the reference relative abundance of bacteria based on a healthy control population **.
- The possible detection range for each bacterium is given as the dark blue shaded boxes.
- The grey shaded boxes indicate levels outside the detection range for each bacterium.
- o sp.- one species, the actual specific name unknown
- o spp.- two or more species of the same genus

Reference:

 Casén C, Vebø HC, Sekelja M, Hegge FT, Karlsson MK, Ciemniejewska E, Dzankovic S, Frøyland C, Nestestog R, Engstrand L, Munkholm P, Nielsen OH, Rogler G, Simrén M, Öhman L, Vatn MH, Rudi K. Deviations in human gut microbiota: a novel diagnostic test for determining dysbiosis in patients with IBS or IBD. Aliment Pharmacol Ther. 2015 Jul;42(1):71-83. doi: 10.1111/apt.13236. Epub 2015 May 14. PMID: 25973666; PMCID: PMC5029765.