

Neuron Specific Enolase (NSE) ELISA Kit

Catalog Number: NSE31-K01 (1 x 96 wells) *For Research Use Only.* v. 2.0 (6.28.2023)

> EAGLE BIOSCIENCES, INC. 20A Northwest Blvd., Suite 112, Nashua, NH 03063 Phone: 617-419-2019 Fax: 617-419-1110 WWW.EAGLEBIO.COM

INTENDED USE

The Eagle Biosciences Human Neuron Specific Enolase (NSE) ELISA Assay Kit (enzyme-linked immunoassay kit) is intended for the quantitative determination of human neuron specific enolase (NSE) levels in serum. The Eagle Biosciences Human Neuron Specific (NSE) ELISA Assay Kit is for research use only and not to be used in diagnostic procedures.

INTRODUCTION

The glycolytic enzyme enolase (2-phospho-D-glycerate hydrolyase) exists as several dimeric isoenzymes ($\alpha\alpha$, $\alpha\beta$, $\beta\beta$ and $\gamma\gamma$) composed of three distinct subunits: α , β , and γ . Three isoenzymes are found in human brain: $\alpha\alpha$, $\alpha\beta$, and $\gamma\gamma$. The heterologous $\alpha\gamma$ -isoenzyme and the homologous $\gamma\gamma$ -enolase isoenzymes are known as neuron-specific enolase (NSE) as these isoenzymes initially were detected in neurons and neuroendocrine cells. By using monoclonal antibodies specific to the γ -subunit of the enzyme allow the test to detect both the $\alpha\gamma$ and the $\gamma\gamma$ forms.

The NSE levels are quite low in normal healthy people and in people with benign disease. Lung cancer is one of the most common cancer forms with incidences about 50-100 per 100,000 population. Approximately 20% of the lung cancer is small cell lung cancer. NSE has been shown to be a valuable tumor marker of neuroendocrine origin, particularly in small cell lung cancer and in neuroblastoma. Although NSE is similar to Chromogranin A in detecting small cell lung cancer and neuroblastoma, Chromogranin A seems better in detecting carcinoid.

PRINCIPLE OF THE ASSAY

The Eagle Biosciences Human Neuron Specific Enolase (NSE) ELISA Assay Kit is designed, developed and produced for the quantitative measurement of human NSE in serum sample. The assay utilizes the two-site "sandwich" technique with two selected monoclonal antibodies that bind to different epitopes of the γ-subunit of the enzyme.

Assay standards, controls and samples are added directly to wells of microplate that is coated with a streptavidin. Subsequently, a mixture of a biotinylated NSE specific monoclonal antibody and a horseradish peroxidase (HRP) labeled NSE specific monoclonal antibody is added to each microtiter well. After the first incubation a "sandwich" immunocomplex of "streptavidin-biotin-monoclonal antibody - human NSE – monoclonal antibody-HRP" is formed. The unbound monoclonal antibodies are removed in the subsequent washing step. For the detection of this immunocomplex, the well is then incubated with a substrate solution in a timed reaction and then measured in a spectrophotometric microplate reader. The enzymatic activity of the immunocomplex bound to the NSE on the wall of the microtiter well is directly proportional to the amount of NSE in the sample. A standard curve is generated by plotting the absorbance versus the respective human NSE concentration for each standard on point-to-point, cubical scales or 4 parameter curve fit. The concentration of human NSE in test samples is determined directly from this standard curve.

REAGENTS PROVIDED AND REAGENT PREPARATION

This NSE ELISA assay kit must be stored at $2 - 8^{\circ}$ C upon receipt. For the expiration date of the kit refer to the label on the kit box. All components are stable until the expiration date.

Allow all reagents to come to room temperature prior to use. Reagents from different kit lot numbers should not be combined or interchanged.

- 1. **STREPTAVIDIN COATED MICROPLATE** One microplate with 12 x eight strips (96 wells total) coated with streptavidin. The plate is framed and sealed in a foil Ziploc bag with a desiccant.
- NSE STANDARDS 2 sets of 5 vials, ready-to-use-vials STANDARD 1: 0 ng/mL STANDARD 2: 8.8 ng/mL STANDARD 3: 29 ng/mL STANDARD 4: 112 ng/mL STANDARD 5: 206 ng/mL
- 3. **CONTROL 1 (LOW)** 1 set of 2 vials, acceptable range on vial.
- 4. **CONTROL 2 (HIGH)** 1 set of 2 vials, acceptable range on vial.
- 5. **NSE Tracer Antibody** 1 vial of 0.6 mL HRP labeled anti-human NSE specific monoclonal antibody in a stabilized protein matrix.
- 6. **NSE Capture Antibody** 1 vial containing 12 mL of biotinylated NSE capture antibody.
- 7. **ELISA Wash Concentrate** 1 bottle of 20 mL of 30 fold concentrate. diluted with 580 mL of DI water
- 8. **ELISA HRP Substrate** 1 bottle of 12 mL of tetramethylbenzidine (TMB) with stabilized hydrogen peroxide.
- 9. ELISA STOP SOLUTION One bottle of 12 mL of 0.5 M acid solution.

Reagent Preparation

- 1. ELISA Wash Concentrate must be diluted to working solution prior use.
- 2. Reconstitute all assay standards and controls by adding 0.5 mL of demineralized water to each vial. Allow the standards and controls to sit undisturbed for 10 minutes, and then mix well by inversions or gentle vortexing. One must make sure that all solid is dissolved completely prior to use. These reconstituted standards and controls should be stored at 2-8°C for up to 30 days. It is not recommended to freeze the reconstituted standards and controls.

STORAGE AND STABILITY

- When stored at 2-8C, unopened reagents will retain activity until the expiration date. Do not use reagents beyond this date.
- Use only reagents supplied with this kit. Do not interchange reagents with different lot numbers
- Opened reagents must be stored at 2-8C
- Microtiter wells must be stored at 2-8C. Once foil bag has been opened, care should be taken to reseal tightly.
- Opened kits retain activity one (1) month if stored properly
- Expiration dates and lot numbers are printed on the label.

MATERIALS NEEDED BUT NOT SUPPLIED

- Precision single channel pipettes capable of delivering 15 μL, 50 μL, 100 μL, and 1000 μL
- Repeating dispenser suitable for delivering 100 µL.
- Disposable pipette tips suitable for above volume dispensing.
- Disposable 12 x 75 mm or 13 x 100 glass or plastic tubes.

- Disposable plastic 100ml and 1000 mL bottle with caps.
- Aluminum foil.
- Deionized water.
- Plastic microtiter well cover or polyethylene film.
- ELISA multichannel wash bottle or automatic (semi-automatic) washing system.
- Spectrophotometric microplate reader capable of reading absorbance at 450nm.

SPECIMEN COLLECTION AND PREPARATION

- 1. Only 20 µL of human serum is required for human NSE measurement in duplicate. No special preparation of individual is necessary prior to specimen collection.
- 2. Whole blood should be collected by venipuncture and must be allowed to clot for a minimum 30 minutes at room temperature before the serum is separated by centrifugation (850 1500xg for 10 minutes).
- 3. The serum should be separated from the clot within two hours of blood collection and transferred to a clean test tube.
- 4. Serum samples should be stored at 2 8°C if the assay is to be performed within 24 hours. Otherwise, samples should be stored at -20°C or below until measurement. Avoid any repeated freezing and thawing of specimen.

Plasma sample is not recommended for NSE measurement.

PROCEDURE

1. Place a sufficient number of streptavidin coated microwell strips in a holder to run human neuron specific enolase (NSE) standards, controls and unknown samples in duplicate.

eeningaraalon					
ROW	STRIP 1	STRIP 2	STRIP 3		
Α	STD 1	STD 5	SAMPLE 2		
В	STD 1	STD 5	SAMPLE 2		
С	STD 2	C 1	SAMPLE 3		
D	STD 2	C 1	SAMPLE 3		
E	STD 3	C 2	SAMPLE 4		
F	STD 3	C 2	SAMPLE 4		
G	STD 4	SAMPLE 1			
Н	STD 4	SAMPLE 1			

2. Test Configuration

- 3. Prepare NSE Tracer Antibody and Capture Antibody working solution by 1:21 fold dilution of the Tracer Antibody with the biotinylated Capture Antibody. For each strip, it is required to mix 1 mL of the Capture Antibody with 50 μL of the Tracer Antibody in a clean test tube.
- 4. Add 10 µL of standards, controls and samples into the designated microwell.
- 5. Add 100 μ L of above mixture of Tracer Antibody and Capture Antibody solution to each of the wells.
- 6. Cover the plate with the plate sealer and incubate plate at room temperature, shaking at 170 rpm for 1 hour.

- Remove plate sealer. Aspirate the contents of each well. Wash each well 5 times by dispensing 350 µL of working wash solution into each well and then completely aspirating the contents. Alternatively, an automated microplate washer can be used.
- 8. Add 100 µL of ELISA HRP Substrate into each of the wells.
- 9. Cover the plate with one plate sealer and also with aluminum foil to avoid exposure to light.
- 10. Incubate plate at room temperature for 10 minutes or less.
- 11. Remove the aluminum foil and plate sealer. Add 100 μ L of ELISA Stop Solution into each of the wells. Mix gently.
- 12. Read the absorbance at 450 nm within 10 minutes in a microplate reader.

NOTE: to reduce the background, one can set the instrument to dual wavelength measurement at 450 nm with background wavelength correction set at 595 nm or 620 nm or 630 nm.

PROCEDURAL NOTES

- 1. It is recommended that all standards, controls and unknown samples be assayed in duplicate. The average absorbance reading of each duplicate should be used for data reduction and the calculation of results.
- 2. Keep light sensitive reagents in the original bottles and avoid unnecessary exposure to the light.
- 3. Store any unused antibody coated strips in the foil Ziploc bag with desiccant to protect from moisture.
- 4. Careful technique and use of properly calibrated pipetting devices are necessary to ensure reproducibility of the test.
- 5. Incubation times or temperatures other than those stated in this insert may affect the results.
- 6. Avoid air bubbles in the microwell as this could result in lower binding efficiency and higher CV% of duplicate reading
- 7. All reagents should be mix gently and thoroughly prior use. Avoid foaming.

INTERPRETATION OF RESULTS

- 1. Calculate the average absorbance for each pair of duplicate test results.
- 2. Subtract the average absorbance of the STD 1 (0 ng/mL) from the average absorbance of all other readings to obtain corrected absorbance.
- 3. The standard curve is generated by the corrected absorbance of all standard levels on the ordinate against the standard concentration on the abscissa using point-to-point or log-log paper. Appropriate computer assisted data reduction programs may also be used for the calculation of results.
- 4. It is recommended to using Point-to-Point curve fit

The human NSE concentrations for the controls and samples are read directly from the standard curve using their respective corrected absorbance. If log-log graphic paper or computer assisted data reduction program utilizing logarithmic transformation are used, sample having corrected absorbance between the 2nd standard and the next highest standard should be calculated by the formula:

Corrected Absorbance (unknown)

x Value of the 2nd STD

Corrected Absorbance (2nd STD)

EXAMPLE DATA AND STANDARD CURVE

Value of unknown = _

A typical absorbance data and the resulting standard curve from Human Neuron Specific Enolase (NSE) ELISA Assay Kit are represented. This curve should not be used in lieu of standard curve run with each assay.

Well	Results			
1.0.	Readings	Average	Corrected	
0 ng/mL	0.042 0.043	0.043	0.000	
5 ng/mL	0.170 0.162	0.166	0.123	
20 ng/mL	0.597 0.587	0.592	0.549	
80 ng/mL	2.058 1.899	1.979	1.936	
178 ng/mL	3.040 3.040	3.040	2.997	
Control 1	0.359 0.358	0.359	0.316	11.27 ng/mL
Control 2	2.803 2.914	2.859	2.816	147.24 ng/mL

Human NSE ELISA

EXPECTED VALUES

One hundred seventy two normal adult sera were measured with this human Neuron Specific Enolase (NSE) ELISA. The normal range was found to be less than 15 ng/mL. It is highly recommend that each laboratory should establish its own normal cut off level.

LIMITATION OF THE PROCEDURE

- 1. Since there is no Gold Standard concentration available for human NSE measurement, the values of assay standards were established by Eagle Biosciences by correlation to a highly purified NSE standard.
- 2. For sample values reading greater than highest standard, it is recommend to re-assay samples with dilution.
- 3. Bacterial or fungal contamination of serum specimens or reagents, or cross contamination between reagents may cause erroneous results.
- 4. Water deionized with polyester resins may inactive the horseradish peroxidase enzyme.

PERFORMANCE CHARACTERISTICS

Sensitivity

The sensitivity of the human NSE ELISA as determined by the 95% confidence limit on 20 duplicate determination of zero standard is approximately 1.2 ng/mL.

High Dose "hook" effect

This assay has showed that it did not have any high dose "hook" effect up to 20,000 ng/mL.

PRECISION AND REPRODUCIBILITY

Intra-assay

The intra-assay precision is validated by measuring two controls samples in a single assay with 20-replicate determinations.

Mean NSE Value (ng/mL)	CV (%)
11.24	4.0
132.16	3.5

Inter-assay

The inter-assay precision is validated by measuring two control samples in duplicate in 12 individual assays.

Mean NSE Value (ng/mL)	CV (%)
11.37	5.99
144.98	4.85

Linearity

Two human serum samples were diluted with assay buffer and assayed. The results in the value of ng/mL are as follows:

#	Dilution	Observed Value	Expected Value	Recovery %
1	Neat	178	-	-
	1:2	85.47	89	96
	1:4	45.38	44.5	102
	1:8	22.40	22.25	101
2	Neat	146	-	-
	1:2	71.44	73	98
	1:4	34.62	36.5	95

Recovery

Two serum samples were spiked with various amounts of human NSE (1 vol. + 1 vol. mixture) and assayed. The results in the value of ng/mL are as follows:

Sample	Spiked Sample	Observed Value	Expected Value	Recovery %
Sample 1	Sample 3	10.32	10.14	102
	Sample 4	20.78	21.68	96
	Sample Sample 1	SampleSpiked SampleSample 1Sample 3Sample 4	SampleSpiked SampleObserved ValueSample 1Sample 310.32Sample 420.78	SampleSpiked SampleObserved ValueExpected ValueSample 1Sample 310.3210.14Sample 420.7821.68

2	Sample 2	Sample 3	10.07	10.23	98
		Sample 4	23.88	20.35	117

QUALITY CONTROL

To assure the validity of the results each assay should include adequate controls with known NSE levels. We recommend that all assays include the laboratory's own or commercial NSE controls in addition to those provided with this kit.

SAFETY PRECAUTIONS

The Human Neuron Specific Enolase (NSE) Assay Kit reagents must be used in a professional laboratory environment and is for Research Use Only and is not to be used in diagnostic procedures. Only source material from which reagents of bovine serum was derived in the contiguous 48 United States. It was obtained only from donor health animals maintained under veterinary supervision and found free of contagious diseases. Wear gloves while performing this assay and handle these reagents as if they were potentially infectious. Avoid contact with reagents containing TMB, hydrogen peroxide, or sulfuric acid. TMB may cause irritation to skin and mucous membranes and cause an allergic skin reaction. TMB is a suspected carcinogen. Sulfuric acid may cause severe irritation on contact with skin. Do not get in eyes, on skin, or on clothing. Do not ingest or inhale fumes. On contact, flush with copious amounts of water for at least 15 minutes. Use Good Laboratory Practices.

PRECAUTIONS

- This kit is for research use only
- Compare contents and packing list, if there is breakage or shortage, notify Eagle Biosciences immediately
- Do not pipette reagents by mouth
- Do not smoke, eat or drink while performing assay
- Wear disposable gloves and proper lab protection and attire
- Treat all samples as potentially infectious
- Do not mix reagents from other lots
- Avoid contact with TMB and Stop solutions. If contact occurs, rinse thoroughly with water
- Eagle Biosciences is not responsible for outcomes as results of tampering with the reagents or using them unconventionally

REFERENCES

- 1. Pinson P, Joos G, Watripont P, Brusselle G, Pauwels R. Serum neuron-specific enolase as a tumor marker in the diagnosis and follow-up of small-cell lung cancer. Respiration. 1997;64(1):102-7.
- 2. Burghuber OC, Worofka B, Schernthaner G, Vetter N, Neumann M, Dudczak R, Kuzmits R. Serum neuron-specific enolase is a useful tumor marker for small cell lung cancer. Cancer. 1990 Mar 15;65(6):1386-90

- 3. Ebert W, Muley T, Trainer C, Dienemann H, Drings P. Comparison of changes in the NSE levels with clinical assessment in the therapy monitoring of patients with SCLC. Anticancer Res. 2002 Mar-Apr;22(2B):1083-9.
- 4. Bonner JA, Sloan JA, Rowland KM Jr, Klee GG, Kugler JW, Mailliard JA, Wiesenfeld M, Krook JE, Maksymiuk AW, Shaw EG, Marks RS, Perez EA.Significance of neuron-specific enolase levels before and during therapy for small cell lung cancer. Clin Cancer Res. 2000 Feb;6(2):597-601.
- 5. Jørgensen LG, Osterlind K, Hansen HH, Cooper EH. Serum neuron-specific enolase (S-NSE) in progressive small-cell lung cancer (SCLC). Br J Cancer. 1994 Oct;70(4):759-61.
- Nitta T, Fukuoka M, Masuda N, Kusunoki Y, Matsui K, Kudoh S, Hirashima T, Yana T, Ito K, Takada M. Significance of serum neuron-specific enolase as a predictor of relapse of small cell lung cancer. Jpn J Clin Oncol. 1995 Oct;25(5):179-83.
- 7. Pahlman S., Esscher T., Bergvall P. And Odelstad L. Purification and characterization of human neuron-specific enolase: radioimmunoassay development. Tumor Biol.1984,5,127-139

Warranty Information

Eagle Biosciences, Inc. warrants its Product(s) to operate or perform substantially in conformance with its specifications, as set forth in the accompanying package insert. This warranty is expressly limited to the refund of the price of any defective Product or the replacement of any defective Product with new Product. This warranty applies only when the Buyer gives written notice to the Eagle Biosciences within the expiration period of the Product(s) by the Buyer. In addition, Eagle Biosciences has no obligation to replace Product(s) as result of a) Buyer negligence, fault, or misuse, b) improper use, c) improper storage and handling, d) intentional damage, or e) event of force majeure, acts of God, or accident.

Eagle Biosciences makes no warranties, either expressed or implied, except as provided herein, including without limitation thereof, warranties as to marketability, merchantability, fitness for a particular purpose or use, or non-infringement of any intellectual property rights. In no event shall the company be liable for any indirect, incidental, or consequential damages of any nature, or losses or expenses resulting from any defective product or the use of any product. Product(s) may not be resold, modified, or altered for resale without prior written approval from Eagle Biosciences, Inc.

For further information about this kit, its application or the procedures in this kit, please contact the Technical Service Team at Eagle Biosciences, Inc. at <u>info@eaglebio.com</u> or at 866-411-8023.