AroCell TK 210 ELISA May Complement Pro PSA and the Prostate Health Index in Differentiating Non-Cancerous from Cancerous Conditions in Prostate Disease

Jagarlumudi KK1,2, Eriksson S1,2, Zupan M3, Kumer K4, Fabjan T4, Hebić G5, Smrkolj T6, and Osredkar J4

ABSTRACT

• Thymidine kinase 1 (TK1) is a pyrimidine salvage pathway enzyme involved in DNA precursor synthesis and its expression is S-phase dependent.
• During uncontrolled cell proliferation, high levels of TK1 leak into the blood and form stable aggregates which, in turn, indicate cell turnover.
• TK1 enzyme activity is an established biomarker for haematological malignancies. However, activity based assays may underestimate TK1 levels particularly in sera from patients with solid tumours due to presence of inactive TK1.
• AroCell AB has developed an ELISA using antibodies against a specific TK1 antigenic site (TK 210) and a recent study demonstrated that TK 210 ELISA had significantly better sensitivity in differentiating healthy from breast cancer patients compared to TK1 activity assays.
• Combinational ROC analysis demonstrated that the AroCell TK 210 ELISA kit can complement both pro PSA and PHI in differentiating Prostate Cancer patients from subjects with non-cancerous prostate conditions.

OBJECTIVES

• The main objective of this study is to determine if TK 210 ELISA can complement the PSA-related biomarkers leading to a higher specificity and sensitivity in the diagnosis of prostate cancer.

METHODS

• Serum samples from 130 male patients with PSA values ranging from 2 to 10 µg/L were collected between 2013 to 2015 from the University Medical Centres in Ljubljana and Maribor, Slovenia.
• 68% of patients were in a non-cancerous group that included benign prostate hyperplasia, prostatitis and high grade prostate intraepithelial neoplasia. 32% were from the patients with confirmed prostate cancer.
• The age range of this group was 48 to 86 years (mean and median = 68).
• 60 serum samples from male blood donors were collected from the Blood Transfusion Centre, Ljubljana. The age range of the blood donors was 22 to 64 years (mean = 41 and median = 40).
• TK1 protein levels were determined with the AroCell TK 210 ELISA kit in both patients and blood donors using the procedure as described (www.e-labeling.eu/AROC1001-15-3).
• PSA, free PSA, and pro-PSA levels were analyzed with commercial assays (Hybritech PSA, Hybritech Free PSA and Access p2PSA - Beckman Coulter USA) on the Access 2 Beckman Coulter analyzer. PHI was calculated using the formula PHI = (p2PSA/TPSA) x vTPSA

CONCLUSIONS

• These results indicate that the AroCell TK 210 ELISA kit can aid in differentiating the non-cancerous group from the confirmed PCA group in urology patients with PSA values between 2 to 10 µg/L.
• Combinational ROC analysis demonstrated that the AroCell TK 210 ELISA kit can complement both pro PSA and PHI in differentiating PCA patients from the other groups.
• Further clinical studies are needed to establish the role of TK 210 ELISA as a complement to pro PSA and PHI, which could be a valuable tool in prostate cancer diagnosis.

Acknowledgements: This project was funded by AroCell AB, Uppsala, Sweden

The AroCell TK 210 ELISA kit is for research use only in the USA. Not for use in diagnostic procedures.

REFERENCES

RESULTS

• Serum TK1 protein levels in male blood donors were in the range of 0.07 to 0.35 µg/L (mean±SD = 0.20±0.08). 0.36 µg/L was used as a cut-off for elevated serum TK1 values.
• The cut-off value for each parameter, and the no. of samples from each group are shown in Table 1. Neither PSA nor free-PSA values showed significant differences between the non-cancerous and PCa groups.
• TK1 protein values in the PCa group (mean±SD = 0.42±0.21; median = 0.36) differed significantly from those with non-cancerous conditions (mean±SD = 0.31±0.18; median = 0.28).

Table 1: Summary of parameters in different groups

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Cut-off value</th>
<th>Non-cancerous (%)</th>
<th>Confirmed PCa (%)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pro PSA (ng/L)</td>
<td>>3.6</td>
<td>83.3</td>
<td>42</td>
<td>0.64</td>
</tr>
<tr>
<td>PHI</td>
<td>>7</td>
<td>71</td>
<td>67</td>
<td>0.02</td>
</tr>
<tr>
<td>TK 210 ELISA (µg/L)</td>
<td>>0.36</td>
<td>50</td>
<td>83</td>
<td>0.68</td>
</tr>
<tr>
<td>Pro PSA+ TK 210</td>
<td>0.298</td>
<td>71.4</td>
<td>67</td>
<td>0.72</td>
</tr>
<tr>
<td>PHI+ TK 210</td>
<td>0.252</td>
<td>88.1</td>
<td>61.4</td>
<td>0.78</td>
</tr>
</tbody>
</table>

Table 2: ROC curve analysis for various parameters comparing the PCa and the control groups

Fig 1A

Fig 1B

ROC curve analysis of pro PSA, TK 210 ELISA and PHI demonstrated similar AUC values for differentiating PCa from controls (Table 2).

Table 2: ROC curve analysis for various parameters comparing the PCa and the control groups